Finding Really Big Primes

Clayton Smith

November 6, 2003

Strategy

- ullet Basic strategy: Choose n. Check whether n is prime. Repeat.
- By Prime Number Theorem, probability that n is prime is $\sim 1/\log n$.
- Expect $\sim \log n$ tests before finding a prime.

Strategy

ullet Problem: Proving that n is prime.

Algorithms for generic n can only handle $\sim 5,000$ digits.

- ullet It helps if n is near a number with many small factors.
- $n = k \cdot a^m \pm 1$ works well.

Mersenne Numbers

•
$$M_n = 2^n - 1$$

• If $2^n - 1$ is prime, then n is prime.

•
$$2^{ab} - 1 = (2^a)^b - 1^b = (2^a - 1)(...)$$

Mersenne Numbers

• Small examples:

$$2^{2} - 1 = 3$$
 $2^{3} - 1 = 7$
 $2^{5} - 1 = 31$
 $2^{7} - 1 = 127$
 $2^{11} - 1 = 2047 = 23 \cdot 89$
:

• Only 39 Mersenne primes are known.

Factors of Mersenne Numbers

Theorem: Let p and q be odd primes, and suppose q divides $M_p=2^p-1$. Then

$$q \equiv 1 \pmod{p}$$

and

$$q \equiv \pm 1 \pmod{8}$$
.

These can easily be combined using the Chinese Remainder Theorem.

Example: $2^{31} - 1 = 2147483647$

If q divides $2^{31} - 1$ then

$$q \equiv 1 \pmod{31}$$

and

$$q \equiv \pm 1 \pmod{8}$$
.

Applying CRT, this gives $q \equiv 1$ or 63 (mod 248). There are 374 such q less than $\sqrt{2^{31}-1}$, and only 84 of these are prime.

In 1772, Euler used this method to show that $2^{31}-1$ is prime.

Primality Test for Mersenne Numbers

Consider the sequence $(v_k)_{k=0,1,...}$ defined by

$$v_0 = 4$$

 $v_{k+1} = v_k^2 - 2$.

Let p be an odd prime. Then $M_p=2^p-1$ is prime if and only if $v_{p-2}\equiv 0\pmod{M_p}$.

Lucas first used this test in 1876 to show that $2^{127}-1$ is prime. (This number has 39 decimal digits.)

Example: $2^7 - 1 = 127$

Working mod $2^7 - 1$:

$$v_0 = 4$$

 $v_1 = 4^2 - 2 = 14$
 $v_2 = 14^2 - 2 = 194 = 67$
 $v_3 = 67^2 - 2 = 4487 = 42$
 $v_4 = 42^2 - 2 = 1760 = 111$
 $v_5 = 111^2 - 2 = 12319 = 0$

Thus $2^7 - 1$ is prime.

Efficiency

- Squaring is hardest part; naive algorithm $O(p^2)$, can be reduced to $O(p \log p \log \log p)$ using FFT.
- Modular reduction is easy in binary; can be eliminated entirely.
- p-2 squarings, so total runtime is $O(p^2 \log p \log \log p)$

Efficiency

- Faster than even a single probabilistic primality test.
- About 10 days to test a 6-million digit number on a 2.4 GHz Pentium.

GIMPS

- Great Internet Mersenne Prime Search
- Distributed computing project
- Founded in 1996 by George Woltman
- http://www.mersenne.org/

GIMPS

- 40,000 computers, 8.5 teraflops
- 5 new Mersenne primes found
- 4 largest known primes

Testing Procedure

- Trial factoring
- ullet p-1 factoring
- Lucas-Lehmer test
- Double check

EFF Prizes

- \$50,000 for first million-digit prime; claimed in 1999 by GIMPS member Nayan Hajratwala
- \$100,000 for first ten-million-digit prime
- \$150,000 for first hundred-million digit prime
- \$250,000 for first billion-digit prime

Largest Known Prime

- $2^{13,466,917} 1$
- 4,053,946 digits
- Found on November 14, 2001 by Michael Cameron of Owen Sound, Ontario

Open Problems

- Are there infinitely many Mersenne primes?
- Are there infinitely many Mersenne composites?